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Global population growth and increasing standards of living 
inevitably cause the expansion and intensification of global 
agricultural land use to fulfil growing demands for food, biofuel 

and other commodities1–3. In turn, agriculture expansion and intensi-
fication threaten ecosystem functioning and lead to species extinction 
through habitat loss and fragmentation3–6. The United Nations’ 2030 
Sustainable Development Goals (SDGs) call for balancing increas-
ing agricultural production with maintenance of ecosystem services7. 
Implementation of SDGs to improve food security, protect freshwa-
ter and terrestrial ecosystems, and mitigate climate change requires 
national policies and international cooperation that are based on con-
sistent, independent and timely data on agriculture extent and pro-
ductivity8,9. Spatiotemporally consistent satellite observations provide 
the most accurate and cost-effective solution for global agricultural, 
land-use mapping and monitoring10. Satellite data have been shown 
to enable national and global agriculture mapping11–17. However, no 
globally consistent, multidecadal, cropland time-series data at locally 
relevant spatial resolutions (30 m per pixel) exist to date.

In the present study, we present a global cropland extent and 
change dataset that can contribute to monitoring national and global 
progress towards SDGs. We define cropland as land used for annual 
and perennial herbaceous crops for human consumption, forage 
(including hay) and biofuel. Perennial woody crops, permanent pas-
tures and shifting cultivation are excluded from the definition. The 
fallow length is limited to 4 years for the cropland class. Our defini-
tion is largely consistent with the arable land category reported by 
the Food and Agriculture Organization (FAO) of the UN18. To cre-
ate the cropland dataset, we utilized the consistently processed 30 m 
spatial resolution Landsat satellite data archive19 from 2000 to 2019. 
The Landsat time-series data were transformed into multitemporal  

metrics that characterize land surface phenology. These metrics 
were used as independent variables for a machine-learning classi-
fication to map global cropland extent. The classification models 
were locally calibrated using extensive training data collected by 
visual interpretation of freely available, high-spatial-resolution sat-
ellite images. We used a probability sample, stratified based on the 
Landsat-based global cropland maps, to estimate cropland area and 
its associated uncertainty, and to analyse pathways of land-use con-
version. Sample reference data were collected through visual inter-
pretation of Landsat time-series data and higher-spatial-resolution 
satellite images. Cropland maps were integrated with the Moderate 
Resolution Imaging Spectroradiometer (MODIS)-derived annual 
net primary production (NPP)20 as a proxy variable for analysing 
crop productivity. The analysis was performed in 4-year epochs 
(2000–2003, 2004–2007, 2008–2011, 2012–2015 and 2016–2019). 
We created one cropland map per epoch (five maps in total), here-
after referred to by the last year of the interval (for example, the 
2019 map represents the 2016–2019 epoch).

Results and discussion
Cropland area and change. Using probability sample data, we esti-
mated the 2019 global cropland area to be 1,244.2 ± 62.7 Mha (the 
uncertainty represents the 95% confidence interval (CI)). Of the 
global cropland area, 55% is in Eurasia, 17% in Africa, 16% in North 
and Central America, 9% in South America and 3% in Australia and 
New Zealand (Table 1; see Extended Data Fig. 1 for region bound-
aries). During the first two decades of the twenty-first century, 
global cropland area increased by 101.9 ± 45.1 Mha, equivalent to 
9% of the 2003 cropland area (Fig. 1). The largest cropland expan-
sion was observed in Africa (by 53.2 ± 39.4 Mha, or 34%). South 
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America had the largest relative cropland gain (by 37.1 ± 8.7 Mha, 
or 49%). Australia and New Zealand, as well as south-west Asia, dis-
played moderate cropland expansion (<0% of the 2003 area). North 

America, Europe and north and south-east Asia featured small net 
cropland area change but pronounced gross cropland gain and loss, 
which balanced each other at the continental scale.

Table 1 | The regional and global map-based and sample-based cropland and cropland dynamics areas

Cropland area 2000–2003 
(MHa)

Cropland area 2016–2019 
(MHa)

Net change 2003–2019 
(MHa)

Gross gain 2003–2019 
(MHa)

Gross loss 2003–2019 
(MHa)

Africa

 Map 142.6 189.6 47.0 62.1 15.1

 Sample 155.1 (39.8) 208.3 (47.4) 53.2 (39.4) 71.5 (33.9) 18.3 (19.4)

South-west Asia

 Map 224.9 250.9 26.0 42.6 16.6

 Sample 237.3 (20.6) 244.8 (21.4) 7.5 (11.7) 29.3 (7.1) 21.8 (9.1)

Australia and New Zealand

 Map 42.8 46.0 3.2 5.2 2.0

 Sample 37.3 (2.7) 40.3 (3.5) 3.0 (2.2) 4.0 (2.1) 1.1 (0.2)

South-east Asia

 Map 172.9 184.5 11.6 30.9 19.3

 Sample 192.7 (20.9) 191.1 (21.8) −1.6 (8.6) 23 (4.1) 24.6 (7.4)

Europe and North Asia

 Map 234.7 233.7 −1.1 29.5 30.5

 Sample 252.3 (21.3) 253.2 (20.7) 0.9 (6.8) 25.3 (6.2) 24.4 (2.5)

North and Central America

 Map 196.9 201.5 4.6 21.3 16.7

 Sample 192.1 (12.4) 193.9 (14.4) 1.8 (11.9) 20.8 (9.2) 19 (7.4)

South America

 Map 75.4 109.3 33.8 41.3 7.5

 Sample 75.5 (6.6) 112.6 (10.3) 37.1 (8.7) 43.5 (8.6) 6.4 (1.5)

World

 Map 1090.3 1215.5 125.2 232.9 107.7

 Sample 1142.3 (55.8) 1244.2 (62.7) 101.9 (45.1) 217.5 (37.7) 115.5 (24.1)

Sample-based estimates include 95% CIs in parentheses.
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Fig. 1 | Global cropland area (map based and sample based) and annual cropland NPP. Cropland area was mapped for each 4-year interval. Sample 
analysis was performed only for the first and the last intervals. The MODIS-based annual NPP represents a 4-year average within the cropland map for the 
corresponding time interval. The error bars for sample-based cropland area estimates represent the 95% CI whereas the error bars for NPP represent 1 s.d. 
of annual values within the time interval.
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From 2003 to 2019, the global population increased by 21% 
from 6.4 billion to 7.7 billion21. As a result, global per-capita crop-
land area decreased by 10%, from 0.18 ha per person in 2003 to 
0.16 ha per person in 2019. An increase in per-capita cropland area 
was observed only in South America, while it decreased in all other 
continents (Fig. 2). The largest relative decrease of per-capita crop-
land area was observed in south-west Asia (by 19%). South-east 
Asia had the smallest 2019 per-capita cropland area (0.08 ha per 
person), whereas Australia and New Zealand had the largest 
(1.34 ha per person).

A comparison of our 2003 and 2019 sample-based cropland area 
estimates with national 2003 and 2018 arable land area reported 
by the FAO22 (Extended Data Fig. 2) shows sound agreements (R2 
of 0.94 and 0.98 for the years 2003 and 2019, respectively). Our 
sample-based cropland area estimate is smaller (by 16% and 11% for 
2003 and 2019, respectively) compared with FAO arable land area. 
The FAO arable land change confirms our findings: both datasets 
demonstrate a net increase in global cropland area, with Africa and 
South America showing the largest net gains. The net loss of arable 
land area in North America, Europe and north and south-west Asia 
reported by the FAO was not confirmed by our results.

Attribution of cropland gains and losses. Of the total 2019 crop-
land area, 217.5 ± 37.7 Mha (17%) represents new cropland estab-
lished since 2003. In South America and Africa, this proportion is 
the highest (39% and 34%, respectively). Half of the new croplands 
replaced natural woody and herbaceous vegetation (49% of gross 
cropland gain area; Table 2). Of that total, 11% represents dryland 
conversion through irrigation, mostly found in south-west and 
south-east Asia and North America. The largest proportions of 
natural vegetation conversion to croplands (excluding dryland irri-
gation) were found in Africa (79% of all gross cropland gain area), 
south-east Asia (61%) and South America (39%). Cropland expan-
sion is a major factor of forest loss and wildland fragmentation4,23,24, 

which illustrates a conflict with SDG 15, specifically, the SDG’s tar-
gets to halt deforestation and degradation of natural habitats9. The 
other half of cropland expansion (51%) was due to pasture conver-
sion and recultivation of abandoned arable land. Nearly all cropland 
expansion in Australia, New Zealand, Europe and northern Asia 
was found within pastures and long fallows (with no crop cultiva-
tion for >4 years). In North and South America, cropland expansion 
through the conversion of pastures and long fallows was more com-
mon (75% and 61%, respectively) than through clearing of natural 
vegetation24,25.

Abandonment or conversion to other land uses affected 10% of 
the 2003 cropland area (115.5 ± 24.1 Mha). Of that area, 52% was 
either converted into pastures or abandoned (Table 2); such conver-
sions may be temporary and followed by crop recultivation years 
later. Industrial and residential construction and infrastructure 
development were the second largest driver of gross cropland loss, 
responsible for 16% of the total cropland area reduction. In south-east 
Asia, 35% of cropland reduction was due to urban sprawl. A portion 
(13%) of 2003 cropland was converted to permanent woody crops 
or aquaculture, with the highest proportion of such transitions in 
south-east Asia (28%). Flooding caused by surface water increase, 
water erosion and reservoir construction affected the cropland area 
on all continents (3% total reduction). The remaining 16% of crop-
land reduction represented tree plantations or restoration of natural 
vegetation after cropland abandonment.

Cropland dynamics on the continental and national scales. The 
global Landsat-based, cropland map time-series is complementary 
to the sample analysis in characterizing global area dynamics (Fig. 
3). The sample analysis showed high accuracy of the global crop-
land maps with variability between regions and lower accuracies for 
change dynamics (Table 3). The cropland map time-series allowed 
us to disaggregate change over time and conduct national-scale 
analyses.
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Fig. 2 | Total and per-capita cropland area change, 2003–2019, per geographic region. The size of the bubbles reflects regional 2019 cropland area.
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Global cropland expansion accelerated over the past two 
decades, with a near doubling of the annual expansion rate from 
5.1 MHa per year to 9.0 Mha per year (Table 4). The change in 
annual cropland expansion rates highlights differences between 
cropland establishment in Africa and South America. In Africa, 
cropland expansion accelerated from 2004–2007 to 2016–2019, 
with a more than twofold increase in annual expansion rates. In 
contrast, cropland expansion in South America decelerated by 
2019, with an annual expansion rate reduced by almost half com-
pared with the 2004–2007 interval.

At the national level, the USA had the largest cropland area by 
2019, closely followed by India and China (Supplementary Table 
4). The largest net cropland increases were found in Brazil (by 
23.1 Mha, or 77% increase over year 2003 cropland area) and India 
(by 15.5 Mha or 13%). The largest cropland area reductions were 

found in Russia (by 5.7 Mha, or 6% decrease over year 2003 crop-
land area) and Cuba (by 0.5 Mha or 28%).

Per-country cropland area derived from our 2019 satellite-based 
map can be compared against the FAO’s arable land estimates for 
2018 (ref. 22) (R2 of 0.97; Extended Data Fig. 3a) and with 100-m 
cropland fraction mapped by the Copernicus Moderate Dynamic 
Land Cover v.3 dataset17 (R2 of 0.96; Extended Data Fig. 3b). The dif-
ferences between national cropland estimates for selected countries 
may be attributed to different factors. We suggest that, in Russia, 
where crop abandonment is widespread and not fully documented, 
the arable land is overestimated by the FAO. In Brazil and Paraguay, 
the Copernicus cropland fraction dataset shows almost twice the 
size of cropland area compared with our estimate. This overestima-
tion is partly due to misclassification of pastures as croplands by the 
Copernicus dataset.

Table 2 | Relative importance of different types of land-use conversions for cropland establishment (gain) and abandonment (loss), 
estimated from sample reference data

AFR SWA ANZ SEA ENA NAM SAM World

Cropland gain (%)

 �Replacing pastures and recultivation of 
abandoned agricultural lands

17 (12) 47 (12) 91 (13) 29 (11) 97 (14) 75 (13) 61 (12) 51 (5)

 Dryland irrigation 3 (13) 15 (12) 0 (0) 10 (12) 0 (0) 9 (12) 0 (0) 5 (5)

 �Conversion of natural vegetation or tree 
plantations

79 (13) 37 (12) 9 (13) 61 (12) 3 (12) 16 (12) 39 (11) 43 (5)

Cropland loss (%)

 �Cropland abandonment or conversion to 
pastures

42 (12) 57 (12) 65 (12) 9 (11) 78 (13) 48 (11) 63 (12) 52 (5)

 Conversion to other intensive agriculture 6 (14) 15 (12) 15 (13) 28 (11) 5 (11) 10 (11) 17 (11) 13 (5)

 Construction, infrastructure and mining 17 (13) 10 (12) 6 (13) 35 (11) 10 (11) 17 (11) 8 (11) 16 (5)

 Flooded land (natural and water reservoirs) 6 (14) 3 (12) 2 (13) 6 (11) 1 (11) 2 (11) 5 (11) 3 (5)

 �Restoration of natural vegetation, tree 
plantations

29 (13) 15 (11) 13 (13) 23 (11) 6 (11) 23 (11) 7 (11) 16 (5)

The analysis was restricted to mapped cropland loss and gain areas. The values in the table represent the percentage of each conversion type from the total cropland loss or gain area in each region and 
globally (with s.e.m. in parenthesis). AFR, Africa; SWA, south-west Asia; ANZ, Australia and New Zealand; SEA, south-east Asia; ENA, Europe and North Asia; NAM, North and Central America; SAM, 
South America.
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Fig. 3 | Global cropland extent and change, 2000–2019. The map shows the proportion of stable cropland, cropland expansion and cropland reduction 
within 0.025° × 0.025° grid cells. The original cropland map time-series has a spatial resolution of 0.00025° per pixel, approximately 30 m at the Equator. 
Country boundaries are from GADM (https://gadm.org).
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Cropland NPP change. The global MODIS-derived annual NPP 
within the cropland area (Extended Data Fig. 4) increased by 25% 
between 2003 and 2019 (from 4.4 Pg C year−1 to 5.5 Pg C year−1; Fig. 1).  
South America had the highest NPP increase (by 0.38 Pg C year−1, 
or 88%) followed by Africa (by 0.29 Pg C year−1, or 50%) (Table 5). 
The per-capita annual cropland NPP also increased globally by 
3.5%, balancing the per-capita cropland area reduction. Two pro-
cesses contributed to the global cropland NPP increase, namely the 
increase in cropland area and the increase in crop primary produc-
tion per unit area. We found that the mean NPP per unit area within 
stable croplands (croplands presented over the entire 2000–2019  
interval) increased by 10%, from 402 g C m−2 year−1 in 2003 to  
442 g C m−2 year−1 in 2019. The highest NPP increase within stable 
croplands was found in South America (from 528 g C m−2 year−1 in 
2003 to 730 g C m−2 year−1 in 2019, or by 25%). The NPP gain within 
stable croplands explains 34% of the total cropland NPP increase 
from 2003 to 2019. Although NPP cannot be used to directly esti-
mate yields, as a measure of vegetation productivity it can be used as 
an indicator of intensification of crop production.

Discussion
The 2019 global cropland map (Extended Data Fig. 5) shows that 
global cropland distribution and dynamics do not follow national 
boundaries, but rather reflect agricultural potential, population 
and land-use history. Major lowland regions of the world have been 
converted to homogeneous agricultural landscapes, including the 
Great Plains in North America, the Pampas in South America, the 
Pontic steppe in Europe, north China and the Manchurian Plains 
in east Asia, the Indo-Gangetic Plain in south Asia, parts of the 
Sahel region in Africa and south-east Australia. Cropland expan-
sion in South America occurred synchronously in Brazil, Argentina, 
Paraguay, Bolivia and Uruguay. A similar pattern of simultaneous 
cropland expansion was observed within Sahelian and Central 
African countries. In south-west and south-east Asia, cropland gain 
was mostly found in drylands, whereas tree plantations, orchards, 
aquaculture and urban areas replaced former croplands in China 
and the Lower Mekong countries. In Russia, the massive crop-
land abandonment in the north26 was partly compensated by the 
recent cropland expansion in the southern steppe regions, primarily 

Table 3 | Regional and global map accuracy metrics

Cropland 2000–2003 (%) Cropland 2016–2019 (%) Stable cropland (%) Cropland gain (%) Cropland loss (%)

Africa

 OA 96.9 (0.7) 96.5 (0.8) 97.2 (0.6) 97.9 (0.6) 99.4 (0.3)

 UA 71.3 (4.1) 77.3 (3.2) 71.9 (4.6) 57 (5) 48 (5)

 PA 65.8 (8.3) 70.6 (7.9) 64.6 (8.2) 49.4 (12) 39.9 (21.5)

South-west Asia

 OA 96.2 (0.7) 96.2 (0.7) 95.7 (0.8) 98.6 (0.2) 98.9 (0.3)

 UA 90.1 (2.7) 87.5 (2.8) 86 (3.5) 59 (4.9) 66 (4.8)

 PA 85 (3.2) 89.2 (3.2) 82.5 (3.5) 85.9 (8.6) 52.1 (10.7)

Australia and New Zealand

 OA 99.1 (0.2) 98.9 (0.2) 99.2 (0.2) 99.6 (0.1) 99.9 (0)

 UA 86 (3.2) 84.6 (3) 88.5 (3.3) 57 (5) 54 (5)

 PA 98.7 (0.4) 96.8 (2.5) 95.8 (1.6) 73.8 (19.1) 100 (0)

South-east Asia

 OA 97.3 (0.6) 96.6 (0.7) 96.7 (0.7) 99.3 (0.1) 99.2 (0.2)

 UA 92.8 (2.3) 86.5 (2.8) 87 (3.4) 69 (4.6) 78 (4.2)

 PA 83.8 (4.2) 84.1 (4.2) 80.1 (4.6) 92.4 (6.3) 60.6 (9.3)

Europe and North Asia

 OA 96.8 (0.7) 96.8 (0.7) 96.1 (0.7) 99.2 (0.2) 99.6 (0.1)

 UA 93.1 (2.2) 93.6 (2) 92.7 (2.7) 71 (4.6) 79 (4.1)

 PA 86.4 (3.3) 86.1 (3.3) 79.3 (3.9) 83.1 (9.3) 98.8 (1.2)

North and Central America

 OA 98.5 (0.5) 97.8 (0.5) 98.6 (0.4) 99 (0.3) 99.4 (0.3)

 UA 93.6 (2.2) 90.8 (2.3) 93 (2.6) 67 (4.7) 82 (3.9)

 PA 96.2 (2.2) 94.7 (2.6) 97 (1.7) 69.7 (14.9) 72.2 (14.1)

South America

 OA 99.5 (0.2) 99.1 (0.3) 99.4 (0.2) 99.3 (0.3) 99.8 (0)

 UA 94.1 (2) 94.5 (1.6) 93.9 (2.4) 88 (3.3) 76 (4.3)

 PA 94.3 (3.5) 92 (3.9) 90.7 (4) 83.7 (7.9) 89.2 (9.6)

World

 OA 97.5 (0.2) 97.2 (0.3) 97.3 (0.2) 98.9 (0.1) 99.4 (0.1)

 UA 90 (1.1) 88.5 (1) 88.3 (1.3) 67.4 (1.9) 73.3 (1.9)

 PA 86 (1.8) 86.4 (1.9) 82.9 (1.9) 73.3 (5.8) 70.3 (6.4)

OA, overall accuracy; UA, user’s accuracy; PA, producer’s accuracy. The s.e.m. of accuracy metrics is shown in parenthesis.
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through fallow land recultivation. The cross-boundary distribution 
of major cropland areas and synchronous cropland dynamics illus-
trate the importance of international cooperation to ensure global 
progress towards SDGs.

Global cropland maps provide spatial context on national, 
cross-boundary and local cropland dynamics, reflecting the history 
of land tenure, national policies and abrupt events such as natural 
and man-made disasters (Extended Data Fig. 6). In eastern Europe, 
the Baltic states and Russia’s Kaliningrad region featured cropland 
expansion through recultivation of long fallows abandoned after 
the breakdown of the USSR, whereas the cropland area in neigh-
bouring Poland and Belarus was relatively stable. Cereal, forage 
and hay production land of the northern Great Plains has different 
dynamics within Canada, where we observed land abandonment 
or conversion to permanent pastures, and the USA, where land 
management has been intensified. The irrigated croplands in Saudi 
Arabia declined after the depletion of groundwater resources and 
the implementation of state policies to discourage water-intensive 
crop production27. The 30-m spatial resolution of the cropland 
maps supports the analysis of local dynamic factors, for example, 
cropland abandonment after radioactive contamination following 
the 2011 nuclear disaster on the Fukushima Daiichi nuclear power 
plant in Japan.

Changes in total and per-capita mapped cropland area from 
2003 to 2019 demonstrate the variability of national responses to 
the need for increased food production to feed a growing popu-
lation (Extended Data Fig. 7). For most countries with moderate 
cropland area gains, we observed small decreases in per-capita 
cropland area. In many African nations (for example, Cameroon, 
Chad, Tanzania and Uganda, among others) the relatively large 
cropland area increases compensated for population growth and 
resulted in small changes in per-capita cropland area. In other 

countries, cropland increase was not adequate to follow population 
growth, causing a substantial decrease of cropland per capita (for 
example, in Ethiopia, Nigeria, Pakistan, Senegal and Tajikistan). 
Per-capita cropland area decreased almost twofold in Niger, which 
experienced high population growth and slow cropland expansion. 
Per-capita cropland area reduction can be an indicator of food inse-
curity in poor countries that rely on subsistence agriculture, whereas 
rich countries like Saudi Arabia can compensate for cropland area 
decline with food imports28,29. Several African countries with rapid 
cropland increase (Angola, Cote d’Ivoire, Democratic Republic  
of the Congo, Mozambique and Zambia) and South American 
countries with industrial export-oriented agricultural expansion 
(Brazil, Bolivia, Paraguay and Uruguay) increased per-capita crop-
land area. The Baltic states of Lithuania and Latvia had the largest 
increase of cropland per capita due to cropland gain through recul-
tivation of agricultural lands abandoned in the 1990s, coupled with 
a sharp population decline (>20% reduction since 2000). Despite 
their small size, these countries are among the top 15 global wheat 
exporters.

More than three-quarters (77%) of the global population live 
in regions with per-capita cropland area and cropland NPP below 
the year 2019 global average (Extended Data Fig. 8). The lowest 
per-capita 2019 cropland NPP was in south-west Asia (40% of the 
global average), which has decreased by 7% since 2003. This find-
ing is aligned with the decrease of per-capita cereal production in 
western Asia by 14% from 2000 to 2019, reported by the FAO22. 
The per-capita cropland area in south-east Asia in 2019 was half 
the global average. In contrast, the per-capita cropland areas and 
cropland NPP in North America, Europe and north Asia in 2019 
were twice the global average. South America had nearly threefold 
higher per-capita cropland NPP than the global average, and it has 
increased by 59% since 2003. Although per-capita cropland area and 

Table 4 | Map-based annual cropland area change

2004–2007 (MHa year−1) 2008–2011 (MHa year−1) 2012–2015 (MHa year−1) 2016–2019 (MHa year−1)

Africa 1.7 2.4 3.7 3.9

South-west Asia 1.8 1.2 1.8 1.7

Australia and New Zealand 0.3 0.1 0.3 0.2

South-east Asia 0.4 0.5 1.1 1.0

Europe and North Asia −1.2 0.1 0.7 0.2

North and Central America −0.5 0.1 1.0 0.6

South America 2.7 2.0 2.3 1.5

World 5.1 6.3 10.9 9.0

Table 5 | Average annual NPP within cropland area

2001–2003 
(Pg C year−1)

2004–2007 
(Pg C year−1)

2008–2011 
(Pg C year−1)

2012–2015 
(Pg C year−1)

2016–2019  
(Pg C year−1)

Africa 0.58 (0.02) 0.63 (0.01) 0.7 (0.02) 0.79 (0.02) 0.88 (0.03)

South-west Asia 0.55 (0.03) 0.61 (0.02) 0.63 (0.05) 0.62 (0.05) 0.65 (0.03)

Australia and New Zealand 0.2 (0.02) 0.2 (0.02) 0.22 (0.02) 0.22 (0.01) 0.22 (0.03)

South-east Asia 0.74 (0.04) 0.76 (0.01) 0.78 (0.02) 0.83 (0.02) 0.86 (0.03)

Europe and North Asia 1.08 (0.02) 1.11 (0.03) 1.09 (0.05) 1.1 (0.05) 1.14 (0.01)

North and Central America 0.83 (0.05) 0.91 (0.05) 0.92 (0.05) 0.92 (0.05) 0.97 (0.06)

South America 0.44 (0.03) 0.57 (0.01) 0.64 (0.04) 0.74 (0.02) 0.82 (0.02)

World 4.43 (0.15) 4.8 (0.08) 4.98 (0.07) 5.21 (0.14) 5.53 (0.01)

The average value is provided for each 4-year interval within the corresponding cropland map. The year 2000 was excluded due to incomplete MODIS data, and the 3-year average for 2001–2003 was 
provided instead. The s.d.s of annual values are shown in parentheses.
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cropland NPP has decreased by >10% in Australia and New Zealand 
since 2003, the region still led the world in both measures in 2019. 
Regions with per-capita cropland area and cropland NPP above the 
global average include the largest grain- and soybean-exporting 
countries (Australia, Argentina, Brazil, USA and Russia).

Regional accuracies (Table 3) highlight the limitations of the 
Landsat-based cropland maps. North and South America, which 
are dominated by large-scale industrial farming, have the highest 
accuracies. In Europe, Asia and Africa, the global map underesti-
mates cropland area due to spatial resolution limitations in mapping 
heterogeneous landscapes. Cropland maps in Australia and New 
Zealand overestimate cropland area due to the inclusion of inten-
sively managed permanent pastures, which are not always separable 
from crops using Landsat data. In addition, mapping change was 
shown to be more difficult, with accuracies generally lower across 
all regions. A probability-based sample analysis is the recommended 
good practice approach30 to estimating the extent of and change in 
land cover and land use, including croplands. The global cropland 
map time-series enables a higher sampling efficiency through strati-
fication at the subnational, national and global scales. The difference 
between our sample-based and map-based cropland area estimates 
and the arable land area reported by the FAO partly related to the 
definitional inconsistency. The FAO country reports may include 
unused arable land and other agricultural land uses10,18, whereas our 
estimates represent the actively cultivated cropland area.

The annual MODIS NPP is the only publicly available, globally 
consistent data that reflect recent changes in primary production 
within croplands. NPP correlates with crop yield, biomass produc-
tion and carbon sequestration, although variation of crop types 
and management practices precludes direct estimation of the crop 
yield from cropland NPP31. The MODIS dataset has been shown 
to underestimate NPP compared with process-based model estima-
tions, especially for irrigated crops32. The difference in spatial reso-
lution between Landsat-based cropland maps and MODIS-based 
NPP data may impede the analysis of cropland primary production 
within heterogeneous landscapes. Our Landsat-based, cropland 
extent time-series data can provide a useful input for improved NPP 
and crop yield modelling at higher spatial resolution and with better 
precision.

High-resolution, satellite-based synoptic data on cropland extent 
and change provide the basis for tracking progress towards sustain-
able food production and reduction of the environmental impact 
of agriculture expansion, as well as for applying crop condition 
monitoring to support decision-making33. Cropland extent is a key 
variable required to estimate emissions from agriculture and is, 
therefore, a part of the essential climate variables required for moni-
toring and modelling the Earth’s climate34. Locally relevant crop-
land map time-series enable the monitoring of land-use conversion 
within high-conservation-value ecosystems and protected areas35. 
The cropland extent map, integrated with other high spatial and 
temporal resolution data, such as forest change36 and surface water 
extent37, can provide a comprehensive overview of human-induced 
environmental change, which supports assessing the progress of 
individual countries towards SDGs.

Methods
Cropland-mapping extent and time intervals. The global boundaries for the 
cropland mapping were informed by the US Geological Survey (USGS) Global Food 
Security-Support Analysis Data at 30 m (GFSAD)11. The cropland mapping extent 
was defined using the geographic 1° × 1° grid. We included every 1° × 1° grid cell that 
contains cropland area according to the GFSAD. Small islands were excluded due to 
the absence of Landsat geometrically corrected data (Supplementary Fig. 1).

The cropland mapping was performed at 4-year intervals (2000–2003, 
2004–2007, 2008–2011, 2012–2015 and 2016–2019). Use of a long interval (rather 
than a single year) increased the number of clear-sky satellite observations in the 
time-series, which improves representation of land-surface phenology and the 
accuracy of cropland detection. For each 4-year interval, we mapped an area as 
cropland if a growing crop was detected during any of these years. In this way, 

we implemented the criterion of the maximum fallow length: if an area was not 
used as cropland for >4 years, it was not included in the cropland map for the 
corresponding time interval.

Landsat data. We employed the global 16-day normalized surface reflectance 
Landsat Analysis Ready Data (Landsat ARD19) as input data for cropland mapping. 
The Landsat ARD were generated from the entire Landsat archive from 1997 to 2019. 
The Landsat top-of-atmosphere reflectance was normalized using globally consistent 
MODIS surface reflectance as a normalization target. Individual Landsat images were 
aggregated into 16-day composites by prioritizing clear-sky observations.

For each 4-year interval, we created a single annualized gap-free 16-day 
observation time-series. For each 16-day interval, we selected the observation with 
the highest near-infrared reflectance value (to prioritize observations with the 
highest vegetation cover) from 4 years of Landsat data. Observations contaminated 
by haze, clouds and cloud shadows, as indicated by the Landsat ARD quality layer, 
were removed from the analysis. If no clear-sky data were available for a 16-day 
interval, we filled the missing reflectance values using linear interpolation.

The annualized, 16-day time-series within each 4-year interval were 
transformed into a set of multitemporal metrics that provide consistent land-surface 
phenology inputs for global cropland mapping. Metrics include selected ranks, 
inter-rank averages and amplitudes of surface reflectance and vegetation index 
values, and surface reflectance averages for selected land-surface phenology stages 
defined by vegetation indices (that is, surface reflectance for the maximum and 
minimum greenness periods). The multitemporal metrics methodology is provided 
in detail19,38. The Landsat metrics were augmented with elevation data39. In this way, 
we created spatially consistent inputs for each of the 4-year intervals. The complete 
list of input metrics is presented in Supplementary Table 1.

Global cropland mapping. Global cropland mapping included three stages that 
enabled extrapolation of visually delineated cropland training data to a temporally 
consistent, global cropland map time-series using machine learning. At all three 
stages, we employed bagged decision tree ensembles40 as a supervised classification 
algorithm that used class presence and absence data as the dependent variables, 
and a set of multitemporal metrics as independent variables at a Landsat ARD pixel 
scale. The bagged decision tree results in a per-pixel cropland probability layer, 
which has a threshold of 0.5 to obtain a cropland map.

The first stage consisted of performing individual cropland classifications for 
a set of 924 Landsat ARD 1° × 1° tiles for the 2016–2019 interval (Supplementary 
Fig. 1). The tiles were chosen to represent diverse global agriculture landscapes. 
Classification training data (cropland class presence and absence) were manually 
selected through visual interpretation of Landsat metric composites and 
high-resolution data from Google Earth. An individual supervised classification 
model (bagged decision trees) was calibrated and applied to each tile.

At the second stage, we used the 924 tiles that had been classified as cropland/
other land and the 2016–2019 metric set to train a series of regional cropland 
mapping models. The classification was iterated by adding training tiles and 
assessing the results until the resulting map was satisfactory. We then applied 
the regional models to each of the preceding 4-year intervals, thus creating a 
preliminary time-series of global cropland maps.

At the third stage, we used the preliminary global cropland maps as training 
data to generate temporally consistent global cropland data. As the regional 
models applied at the second stage were calibrated using 2016–2019 data alone, 
classification errors may arise due to Landsat data inconsistencies before 2016. 
The goal of this third stage was to create a robust spatiotemporally consistent set 
of locally calibrated cropland detection models. For each 1° × 1° Landsat ARD 
tile (13,451 tiles total), we collected training data for each 4-year interval from 
the preliminary cropland extent maps within a 3° radius of the target tile, with 
preference to select stable cropland and non-cropland pixels as training. Training 
data from all intervals were used to calibrate a single decision tree ensemble for 
each ARD tile. The per-tile models were then applied to each time interval, and 
the results were post-processed to remove single cropland class detections and 
omissions within time-series and eliminate cropland patches <0.5 ha. Manual 
masks to remove map artefacts (for example, cropland overestimation over 
temperate wetlands and flooded grasslands) were applied in some regions to 
improve the map quality. The final global cropland map time-series are available at 
https://glad.umd.edu/dataset/croplands.

Sample analysis. The sample analysis had two objectives: to estimate cropland 
area and its associated uncertainty and to assess cropland map accuracy. Sample 
interpretation and sample-based analysis were done only for the start (2003) and 
the end (2019) of the cropland-mapping interval. Accuracies of intermediate 
cropland maps (2007, 2011 and 2015) were not assessed, but were considered to 
be similar to those of the 2003 and 2019 maps due to implementation of the same 
classification model and consistently processed Landsat data41. The analysis was 
performed separately for each of the seven regions outlined in Extended Data Fig. 1, 
as well as globally. The regional boundaries were aligned with national boundaries 
to enable comparison with national data. Only land pixels were considered; pixels 
labelled as permanent water and snow/ice in the Landsat ARD data quality layer 
were excluded. In each region, we selected five strata based on the map time-series 
corresponding to stable croplands, cropland gain and loss, possible cropland 
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omission area and other lands (Supplementary Tables 2 and 3). The possible 
cropland omission stratum (stratum 4) includes areas where omission errors are 
probable, specifically pixels that were not mapped as cropland and either (1) were 
identified as crops by the GFSAD11 or (2) had the decision tree-based cropland 
probability between 0.1 and 0.5. We randomly selected 100 sample units (Landsat 
data pixels) from each stratum (500 samples pixels per region, 3,500 in total).

Sample interpretation was performed visually using available remotely 
sensed data time-series, including Landsat ARD 16-day data, composites 
of selected multitemporal metrics and high-resolution images provided by 
Google Earth (Supplementary Fig. 2). Each sample pixel was interpreted by two 
experts independently and the disagreements were discussed and resolved by 
the research team. The interpretation legend includes the 2003–2019 cropland 
dynamics categories and land-use transition types. The sample reference data and 
interpretation results are available at https://glad.umd.edu/dataset/croplands.

Area estimation. The sample-based area estimation was performed following 
previously published methods42,43. The 2003 and 2019 total cropland area, stable 
crops, gross cropland loss and gain, and net change were estimated within each 
region separately, and for the entire world using equation (1). The area and the 
total number of Landsat pixels for each region and each stratum are provided in 
Supplementary Table 3. For each of the 100 sample pixels sampled in each stratum, 
pu was defined by class presence, for example, for 2003 cropland, pu = 0 (2003 
cropland absence) or pu = 1 (2003 cropland presence). The pu was defined similarly 
for the 2019 cropland, stable crop, gross cropland loss and gain classes. For the net 
cropland area change, pu had values of 1 (cropland gain), −1 (cropland loss) and 0 
(no change).

Â =

∑H

h=1
Ahp̄h (1)

where Â is the estimated cropland/cropland change area,
Ah the area of stratum h,
H the number of sampling strata,
p̄h =

∑
u∈h pu
nh the mean cropland/cropland change proportion of samples in 

stratum h; and
nh the sample size (number of sample pixels) in stratum h.
The s.e.m. of the area was estimated from the variances of cropland (or 

cropland dynamics category) class values of pu for sample pixels in each stratum 
using equation (2). The 95% CI was obtained by multiplying s.e.m. by 1.96:

s.e.
(

Â
)

=

√

√

√

√

H
∑

h=1
A2
h

(

1 −

nh
Nh

) s2ph
nh

(2)

where s.e.
(

Â
)

 is the s.e.m. of cropland/cropland change class area and

s2ph =

∑
u∈h(pu−p̄h)2

nh−1  the sample variance for stratum h.

Proportion of land-use trajectories. We analysed the land-use trajectories of 
cropland loss and gain using reference sample data within cropland gain and loss 
strata only. Inclusion of sample pixels from other strata where cropland change 
was detected would have inflated the area of land-use trajectories that these pixels 
represent (that is, if a sample pixel from a stable cropland stratum was interpreted 
as cropland gain due to forest clearing, including the proportion of forest 
clearing from this large stratum, it will dominate the total regional estimate). The 
proportion of each land-use trajectory (within cropland gain and loss separately) 
was estimated from the sample and reported as the percentage of the total gain 
or loss along with its s.e.m. (Table 2). A combined ratio estimator for stratified 
random sampling43 was employed to estimate the percentages (equation (3)).

R̂ =

∑H
h=1 Ahȳh

∑H
h=1 Ahx̄h

× 100 (3)

where: R̂ is the estimated class proportion expressed as a percentage;
H the number of sampling strata;
Ah the area of stratum h;
ȳh =

∑
u∈h yu
nh  the sample mean of the yu values in stratum h, where yu = 1 if 

pixel u is classified as belonging to a specific transition in the reference sample 
interpretation, and yu = 0 otherwise; and

x̄h =

∑
u∈h xu
nh  the sample mean of the xu values in stratum h, where xu = 1 if 

pixel u is classified as any cropland loss/gain in the reference sample interpretation, 
and xu = 0 otherwise.

The s.e.m. of the estimated ratio of class proportion expressed as percentage 
was calculated using equation (4):

s.e.
(

R̂
)

=

√

√

√

√

1
X̂2

H
∑

h=1
A2
h

(

1 −

nh
Nh

)

(

s2yh + R̂2s2xh − 2R̂sxyh
)

/nh × 100 (4)

where: s.e.
(

R̂
)

 is the s.e.m. of the estimated proportion expressed as a percentage;
Nh the total number of pixels in stratum h;
nh number of sample pixels in stratum h;

X̂ =

H
∑

h=1
Ahx̄h the estimated total area of cropland loss/gain expressed in area 

units; and
s2yh and s2xh the sample variances in stratum h; and sxyh the sample covariance in 

stratum h estimated as follows:

s2yh =

∑

u∈
(yu − ȳh)2 / (nh − 1)

s2xh =

∑

u∈h
(xu − x̄h)2 / (nh − 1)

sxyh =

∑

u∈h
(yu − ȳh) (xu − x̄h) / (nh − 1) .

Map accuracy. The map accuracy metrics include overall accuracy (the proportion 
of correctly mapped sample pixels), user’s accuracy of the cropland class (which 
reflects the cropland class commission) and producer’s accuracy of the cropland 
class (which reflects the cropland class omission)42. All accuracy metrics and 
respective s.e.m.s are presented as percentages (Table 3).

To estimate overall accuracy, we defined yu = 1 if pixel u is classified correctly 
and yu = 0 if pixel u is classified incorrectly. The estimator for overall accuracy is 
then expressed by equation (5), and s.e.m. for overall accuracy is computed using 
equation (6).

Ô =

∑H
h=1 Nhȳh
N × 100 (5)

where: Ô is the estimated overall accuracy, expressed as a percentage; H the 
number of sampling strata; Nh the total number of pixels in stratum h; N the total 
number of pixels in the reporting region; and ȳh =

∑

u∈h
yu/nh the sample mean of 

the yu values in stratum h.

s.e.
(

Ô
)

=

√

1
N2

∑H

h=1
N2

h (1 − nh/Nh) s2yh/nh × 100 (6)

where s.e.
(

Ô
)

 is the s.e.m. of the overall accuracy, expressed as percentage;  

nh the number of sample pixels in stratum h; and s2yh the sample variance: 
s2yh =

∑

u∈h
(yu − ȳh)2 /(nh − 1). For estimating user’s accuracy of the croplands 

class, we defined yu = 1 if sample pixel u is correctly mapped as cropland, otherwise 
yu = 0, and xu = 1 if sample pixel u is mapped cropland, otherwise xu = 0. For the 
producer’s accuracy, we defined yu = 1 if sample pixel u is correctly mapped as 
cropland, otherwise yu = 0, and xu = 1 if sample pixel u is interpreted as cropland, 
otherwise xu = 0. The estimator of the user’s accuracy and producer’s accuracy was 
then expressed as a ratio estimator (equation (7)) and their s.e.m. calculated using 
equation (8), which are similar to equations (3) and (4), except that the strata were 
weighted by their total number of pixels (Nh) rather than the areas (Ah) for the 
purposes of map accuracy assessment (with pixel being the primary mapping unit):

R̂ =

∑H
h=1 Nhȳh

∑H
h=1 Nhx̄h

× 100 (7)

where R̂ is the estimated user’s/producer’s accuracy, expressed as a percentage.
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1
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H
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(
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)

(

s2yh + R̂2s2xh − 2R̂sxyh
)
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where s.e.
(

R̂
)

 is the s.e.m. of the estimated user’s/producer’s accuracy, expressed as 
a percentage.

X̂ =

H
∑

h=1
Nhx̄h.

Cropland NPP. The cropland NPP was evaluated using the globally consistent 
Collection 6 MODIS-based, annual year-end gap-filled NPP product 
(MOD17A3HGF20). The product provides the sum of total daily NPP through the 
year at a 500-m spatial resolution (kg C m−2 year−1). The annual NPP data were 
resampled to our Landsat ARD data grid and were overlaid with the corresponding 
4-year cropland maps to calculate total and per-unit area NPP for each region and 
each year. We used average annual NPP for each 4-year interval, except for the 
2000–2003 interval, where a 3-year average was used instead to avoid using the 
year 2000 when MODIS data were incomplete. The s.d. of the annual estimates is 
provided as an uncertainty metric.
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National total and per-capita cropland area and cropland NPP. For the national 
cropland area analysis, we used public geographic information systems (GIS) 
country boundaries from GADM (https://gadm.org).

We employed the 2019 Revision of World Population Prospects21 to calculate 
global, regional and national population for years 2003 and 2019. As the 
boundaries of analysis regions (Extended Data Fig. 1) are aligned with country 
boundaries, we were able to summarize the regional population totals from 
national data. The population data were related to our sample-based (for global 
and regional estimates) and map-based (for national estimates) cropland area 
to estimate per-capita cropland area and change. Similarly, we related regional 
cropland NPP to population data to estimate per-capita cropland NPP for 2003  
and 2019.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The global cropland maps for 2003, 2007, 2011, 2015 and 2019, cropland dynamic 
maps (net cropland gain and loss) and sample data are publicly available from 
https://glad.umd.edu/dataset/croplands. The MODIS NPP data are publicly 
available from https://lpdaac.usgs.gov/products/mod17a3hgfv006. Statistical  
data on arable land extent and population at the national level are available from 
https://www.fao.org/faostat/en/#data/RL and https://population.un.org. GIS 
country boundaries are available from GADM (https://gadm.org). Source data are 
provided with this paper.

Code availability
The global Landsat ARD data, metric generation, image classification, spatial data 
analysis and statistical sampling codes are available from https://glad.umd.edu/ard.
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Extended Data Fig. 1 | Regions of analysis. Regions of analysis. Country boundaries are from GADM (https://gadm.org).
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Extended Data Fig. 2 | Comparison of FAO arable land area estimates with sample-based cropland area by region. Comparison of FAO arable land area 
estimates22 with sample-based cropland area by region. Error bars represent the 95% confidence interval of the sample-based area estimates. Region 
abbreviations: AFR – Africa; SWA – Southwest Asia; ANZ – Australia and New Zealand; SEA – Southeast Asia; ENA – Europe and North Asia; NAM – 
North and Central America; SAM – South America.
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Extended Data Fig. 3 | Per-country cropland area comparison with FAO arable land area and Copernicus cropland fraction map. Per-country cropland 
area comparison. a. Comparison between 2018 FAO national arable land area22 and 2019 map-based cropland area from this study. b. Comparison 
between 2019 cropland cover fraction layer from Copernicus Moderate Dynamic Land Cover V3 dataset17 and 2019 map-based cropland area from this 
study. The Copernicus cropland area is calculated using the proportion of cropland per 100 m grid cell resampled to 30 m resolution used in this study.
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Extended Data Fig. 4 | MODIS-derived annual NPP within the mask of cropland for the 2016–2019 interval. MODIS-derived annual NPP (from MOD17 
product, https://lpdaac.usgs.gov/products/mod17a3hgfv006/) within the mask of cropland for the 2016–2019 interval. The NPP data represent the 
four-year average for the 2016–2019 interval. Country boundaries are from GADM (https://gadm.org).
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Extended Data Fig. 5 | 2019 cropland proportion within 0.025°×0.025° grid cells. 2019 cropland proportion within 0.025°×0.025° grid cells. The original 
cropland map has a spatial resolution of 0.00025°×0.00025° per pixel, approximately 30 m at the Equator. Country boundaries are from GADM  
(https://gadm.org).
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Extended Data Fig. 6 | Regional-to-local scale examples of cropland dynamics, 2000–2019. Regional-to-local scale examples of cropland dynamics, 
2000–2019. a – Cross-boundary cropland dynamics in Eastern Europe (center at 22.48°, 54.35°); b – Cropland dynamics on the border between 
Saskatchewan, Canada, and Montana, the USA (center at −106.08°, 48.99°); c – Decline of irrigated cropland area, Saudi Arabia (center at 43.58°, 
27.14°); d – Cropland abandonment after 2011 nuclear disaster on Fukushima Daiichi nuclear power plant, Japan (zoom-in image center at 141.03°, 37.42°). 
Country boundaries are from GADM (https://gadm.org).
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Extended Data Fig. 7 | National total and per capita cropland area change from 2003 to 2019. National total and per capita cropland area change from 
2003 to 2019. Countries with change below 20% are shown in gray and not labeled. Only countries with 2019 cropland area above 1 Mha were analyzed. 
DRC stands for the Democratic Republic of the Congo.
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Extended Data Fig. 8 | Comparison of the regional and global 2019 per capita sample-based cropland area and per capita cropland NPP. Regional 
comparison of the values of natural logarithm of the ratio of regional (x) and global ( x̄) 2019 per capita sample-based cropland area, ha person−1 (x axis); 
and values of natural logarithm of the ratio of regional (y) and global ( ȳ) 2019 per capita cropland NPP, kg C year−1 person−1 (y axis). The size of the 
bubbles reflects 2019 regional population.
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Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection The satellite data processing, classification, and sample analysis were done using freely available GLAD ARD Tools V1.1 (glad.umd.edu/ard). 
Source Landsat data obtained from public sources (USGS data depository)

Data analysis Data analysis performed using GLAD ARD Tools V1.1 (glad.umd.edu/ard) and other open-source packages (GDAL, R, QGIS)

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

All global cropland maps, cropland dynamic maps, and sample data available at https://glad.umd.edu/dataset/croplands/. The global Landsat ARD data, metric 
generation and image classification codes are available from https://glad.umd.edu/ard.
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Ecological, evolutionary & environmental sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description Global satellite-based wall-to-wall cropland mapping and sample-based area estimation for 2000-2019 time interval. Cropland maps 
were integrated with the Moderate Resolution Imaging Spectroradiometer-derived annual net primary production (NPP) as a proxy 
variable for analyzing crop primary production. 

Research sample We utilized the consistently processed global Landsat satellite data archive from 2000 to 2019 for both wall-to-wall mapping and 
sample analysis. Global MODIS-based annual NPP within cropland extent used as  proxy variable to analyze crop productivity. 

Sampling strategy Stratified random sampling design, with Landsat data pixels serving as a sampling unit. We randomly selected 100 sample units 
(Landsat data pixels) from each stratum (500 samples pixels per region, 3,500 in total). The strata areas and pixel numbers are 
provided with the manuscript. The entire database of sample data are provided on-line (https://glad.umd.edu/dataset/croplands/)

Data collection Mapping and sample analysis were performed by the authors. Mapping was done through extrapolation of manually collected 
training data at the global extent using machine learning tools. Sample interpretation was performed visually using available remotely 
sensed data time-series, including Landsat ARD 16-day data, composites of selected multi-temporal metrics, and high-resolution 
images from Google Earth.

Timing and spatial scale The analysis was performed in four-year intervals (2000-2003, 2004-2007, 2008-2011, 2012-2015, and 2016-2019). The analysis was 
performed at the global extent. The spatial resolution of the cropland maps is 0.00025 degree per pixel, or approximately 30 m at the 
Equator.

Data exclusions No data exclusion

Reproducibility The Landsat ARD data and GLAD ARD Tools ensures full reproducibility of this research. 

Randomization Statistical samples were selected using stratified random design. From each strata, a set of samples were extracted randomly from 
the entire population (using R "sample" function).

Blinding Blinding was not relevant for this study that relied on satellite image interpretation and wall-to-wall mapping.

Did the study involve field work? Yes No

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
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Animals and other organisms

Human research participants

Clinical data

Dual use research of concern

Methods
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MRI-based neuroimaging
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